

End-of-Pipe Semiconductor Wastewater Reclaim

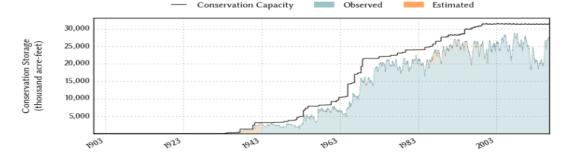
nnicott BRAG

JONES-ATTWOO

GOEMA

OUTLINE

- A CALL TO ACTION
- APPROACH
- **RESULTS**
 - PILOT CONSTRUCTION
 - TEST PLAN
 - PILOT PERFORMANCE
- CONCLUSIONS/TAKEAWAYS



A CALL TO ACTION

North Texas Water

**Surface water is the primary source for Texas (80+%)

The Risks

- Regional water constraints are a rising risk to our ability to manufacture wafers (population, infrastructure degradation and capacity, climate change)
- Water costs are continuing to increase (up 8-10% YOY)
- Need to look at the value of water as well as the cost of water
- What do we do if the North Texas situation worsens?

• The Response

- Develop water balances for all sites
- Incentivize and prioritize water reduction inside existing cost reduction funding, tracking, best practice structure
- Further alignment with site water champions as well as project execution and savings validation
- After 5 years of consumption reduction and reuse enhancement:
 - Water consumption per chip produced reduced by 37%
 - All "low hanging fruit" achieved and easy to recover reuse streams captured
- New Picture:
 - Makeup (80% for DIW/UPW , 18% for Cooling Towers/Scrubbers , 2% All other uses)
 - Outflows (80% through IWW, 15% through evaporation, 5% through sanitary)
 - **What if we see end-of-pipe IWW as a resource? What if the entirety of it can be a source of new/makeup water? What is the cost? What are the risks?

APPROACH

• Options

- Wait until situation worsens and technologies are even more mainstream
- Move product to areas without geographical risk
- Develop a system with trial and error (bottoms-up)
- Develop a system using Systems Engineering Process (tops-down)

• **Objectives**

- 1. Understand and quantify the variability in water streams (Can our wastewater be reclaimed?)
- 2. Pilot technologies and systems capable of altering water quality to acceptable limits (What would it take?)
- 3. Quantify and develop risk mitigation strategies for waste water reuse in semi manufacturing processes (Can we do it reliably?)
- 4. Reduce city water consumption and optimize total lifecycle cost for all water use systems (Can we do it cost effectively?)

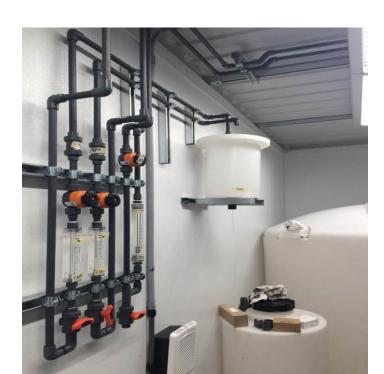
• Why will this work?

- This is a formalized process focused on stakeholder requirements definition and life cycle considerations
 - Upfront risk management
 - Requirements definition (traceable and verifiable)
 - Adaptable and Iterative
 - Make use if Integrated Product Teams and lessons learned
 - Find errors before the system is built (optimize cost and schedule)
- End-of-pipe reclaim for makeup to DIW Plant (using vendors with expertise)

RESULTS

PILOT CONSTRUCTION

PILOT CONSTRUCTION



PILOT CONSTRUCTION

COMPRISES (QTY 2) 40-FT SHIPPING CONTAINERS

OVIVO ON-SITE LABORATORY

ULIKAPUKEMICKUZUIO.COM

RESULTS

TEST PLAN

RESULTS - TEST PLAN

Example Test Items:

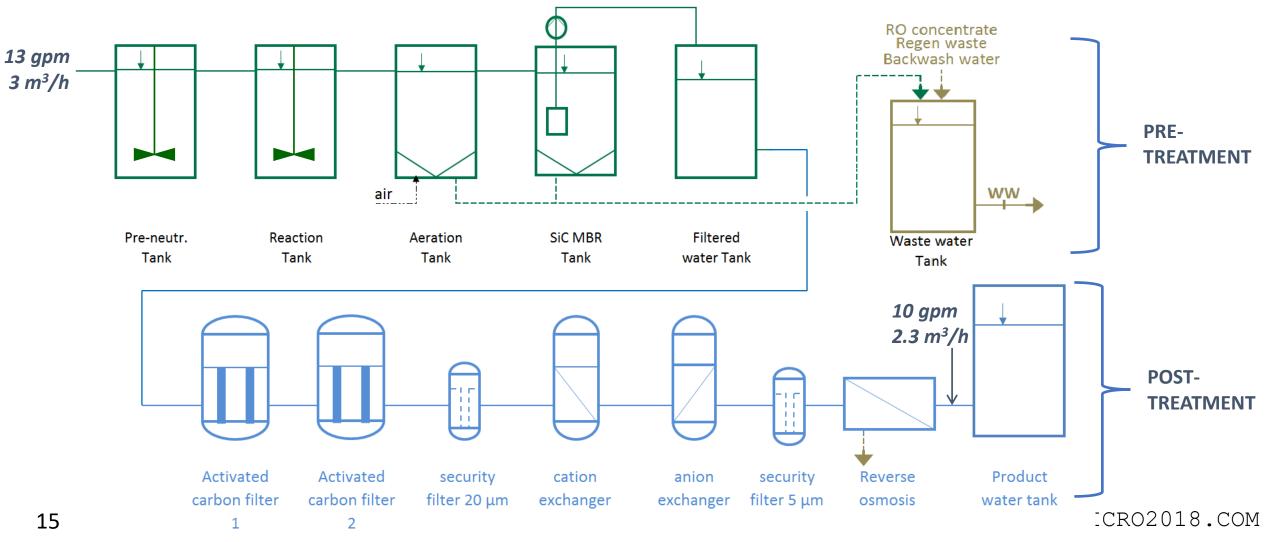
- Spike each unit processes to test deviations (outside normal variation) Stress Test
- Conduct bacteria dip slide samples and microscope inspection for bio population health
- Perform post-pilot consumable destructive testing?
- Quantify performance and maintenance required for probes and analyzers
- Quantify benefit of upfront segregation (ion exchange breakthrough curves)
- Track man-hours for pilot and lab operation by unit process/equipment
- Test the pilot configuration for 1st pass RO Reject Recycle (back to front of pilot) during the trial period
- Conduct a final inspection for all tanks, pumps, piping, etc. prior to full decommissioning. Checking for advanced fouling, consumables breakthrough, etc.

				1.Bacte innocula					FeCl _a		3.Bacie innocula					
				astewater system		embrane IP #1	SiC membran CIP #2		2.Bacteria innoculation		Feed flow of 13 gpm reached				Stop Final meet	
_		-		↓ ↓		↓		- ¥ - •	• •		-			↓		ŧ.
Mechanical	installation	Commissionir		removal	Bacteria development	Post-tr	eatment in st including R			tm an t continu iithaut RD		lant run test (v	with only R	O first pass)	Stress test	
	non potable water					Pr	re-treatme	ent optimiz	ation							
wo	W 1	W 2	W3	W 4	W5	W 6	W7	W8	W9	W10	W11	W12	W13	W14	W15	\vdash
16	16	16	9	16	16	15	19	15	16	19	16	19	15	10	19	16
~	22/	/29/1	03/07/1	03/14/:	03/21/1(03/28/1(04/04/1(11/	18/	25/	05/02/:	/60	16/	/23/	30/	06/06/
02/	02/	02/	03/	03/	03/	03/	04/	04/	04/	04/	05/	05/	05/	05/	05/	06/
· · · · ·			•	•							•		•	•	•	

- Pilot Test Duration (90 days) with end-of-pipe wastewater from a semiconductor fab
- The fab effluent contained varying concentrations of chemicals applied during manufacturing process:
 - Hydrogen peroxide (H₂O₂)
 - Tungsten (W)
 - Ammonia (NH₄)
 - Fluorides (F)
 - Organic compounds including:
 - Isopropanol (IPA)
 - Tetramethylammonium hydroxide (TMAH)
 - Acetone
 - \circ $\,$ High salinity and hardness $\,$
 - Fine and very fine particles (e.g. SiO₂)

RESULTS

PILOT PERFORMANCE



FAB EFFLUENT QUALITY – 3 MONTHS DATA

March 4th to June 3rd 2016																	
Parameter	unit	N° Samples	min	avg	max	Parameter	unit	N° Samples	min	avg	max	Parameter	unit	N° Samples	min	avg	max
Temperature	°F	101	72.3	79.2	84.2	тос	ppm	104	13.2	20.7	35.9	Metals					
Temperature (°C)	°C	95	22.4	26.2	29	IPA	ppm	102	0.10	5.0	30.12	Lla lla		102	< 0.01	< 0.01	< 0.01
TSS	ppm	35	0.2	1.8	6.4	Acetone	ppm	99	0.10	0.17	2.1	Hg W	ppm ppm	102	2.1	4.8	11
Turbidity	NFU	77	2.4	9.6	17.3	ТМАН	ppm		5	10	15	AI	ppm	102	< 0.01	0.02	0.2
		11	2.4	5.0	17.5		- ppm			10	15		ppm	102	< 0.01	0.02	0.2
Micro-Bio	CFU/mL	12	0	7.6	40	Oxygen demand						Cr	ppm	102	< 0.01	< 0.01	< 0.01
ORP	mV	103	117	214	360	СОД	mg/l	16	31	60.8	110	Cu	ppm	102	< 0.01	0.01	0.1
H2O2	ppm	76	< 0.5	110	400	BOD	mg/l	0	0	0	0	Fe	ppm	102	< 0.01	0.02	0.54
Conductivity	μS/cm	105	909	1259	8000							Se	ppm	96	< 0.01	0.01	0.06
рН		103	6	7.9	8.8	-	Zn ppm 102 < 0.01 0.05 4.6										
												Si	ppm	102	2.2	10.6	15.7
Cations						Anions						As	ppm	97	< 0.01	< 0.01	< 0.01
тн	ppm CaCO3	102	17.46	25.5	43.49	Alkalinity	ppm CaCO3	103	14.55	47.1	112.5	В	ppm	101	< 0.01	0.03	0.38
Ca	ppm	102	5.9	8.7	15.1	F	ppm	103	18	41.8	102	Ni	ppm	102	< 0.01	< 0.01	< 0.01
Mg	ppm	102	0.6	0.9	1.6	СІ	ppm	103	28	90.4	360	Ag	ppm	102	< 0.01	< 0.01	< 0.01
Sr	ppm	102	0.06	0.79	1.60	NO3-N	ppm	103	0.2	1.2	19	Ті	ppm	102	< 0.01	0.01	0.02
Ва	ppm	102	< 0.01	< 0.01	< 0.01	NO3	ppm	104	0.0	5.5	84.1	Mn	ppm	97	< 0.01	0.0	0.02
Na	ppm	97	4.6	64.2	1400	SO4	ppm	103	11	205.2	> 3000	Co	ppm	97	< 0.01	< 0.01	< 0.01
к	ppm	102	0.8	1.8	11.5	PO4-P	ppm	103	1	3.8	19.6						
NH4-N	ppm	104	61	107.6	169	PO4	ppm	104	0.0	11.5	60.1						
NH4	ppm	105	78.4	136.3	217.3	Total anions	meq/l	101	1.0	10.3	68.9						
Total cations	meq/l	100	7.6	10.9	68.9												
14						Dissolved SiO2	ppm	102	4.8	20.6	27.4						

RECLAIM SYSTEM OVERVIEW

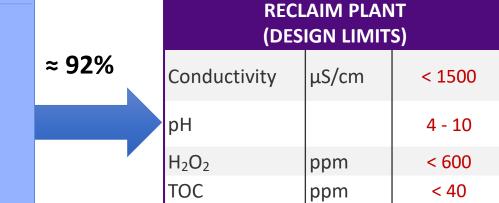
	B EFFLUEN SURED VAL		
Conductivity	μS/cm	909 - 8000	100%
рН		6 - 8.8	
H_2O_2	ppm	0.5 - 400	
ТОС	ppm	13 - 36	

FEED DIVERSION POINT

Two-valves diversion system with following analyzers:

Diverted wastewater

stream to the city WW


≈8%

- Conductivity

- рН

- (TOC)

- (H₂O₂)

PLANT FEED WATER (AVERAGE VALUES)								
Conductivity	μS/cm	1145						
рН		7.9						
H ₂ O ₂	ppm	106						
ТОС	ppm	20.5						
IPA	ppm	4.8						
Acetone	ppm	0.17						
ТМАН	ppm	10						
F	ppm	41.4						
NH ₄ -N	ppm	106.9						
W	ppm	4.7						
Dissolved Silica	ppm	20.3						
TSS	ppm	1.8						
Turbidity	NFU	9.7						

WCF > 97%

PRE-TREATMENT

Nutralization/Reaction tanks: pH adjustment and flocculant dosing (FeCl₃) Aeration tank: filled with bio-media providing maximum surface area for bacteria to colonize

MBR filtration tank: SiC (0.1µm) membranes, physical barrier to suspended solids (solids in the fab WW, bacteria, flocs)

UF concentrate discharged to city WW (or filterpress)

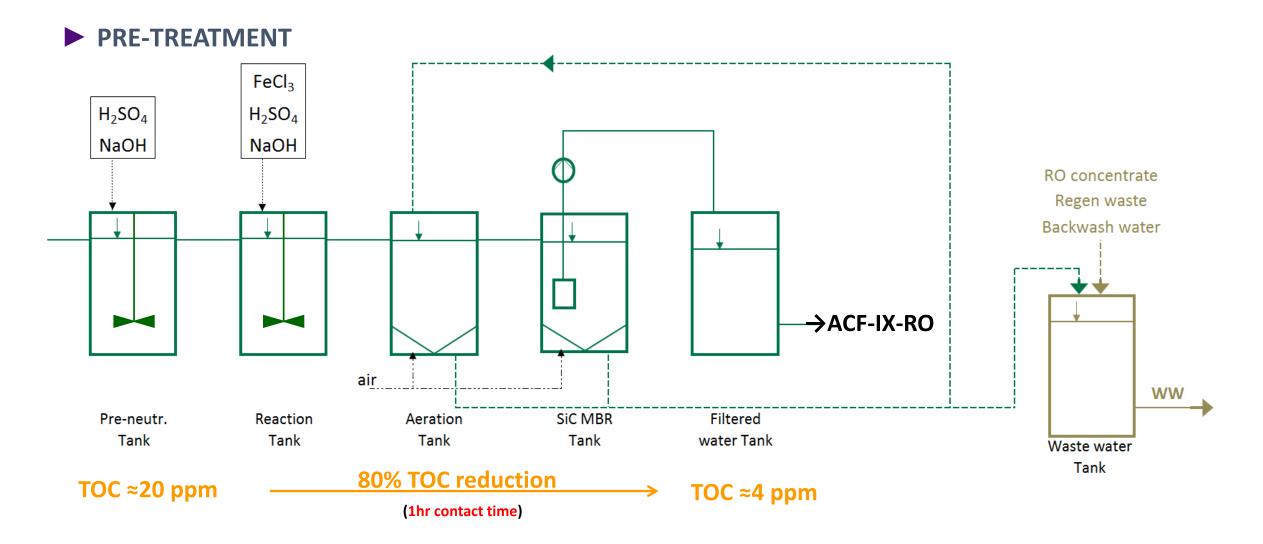
WCF > 85%

POST-TREATMENT

Activated carbon filter: Populated with specfic bacteria for further TOC reduction

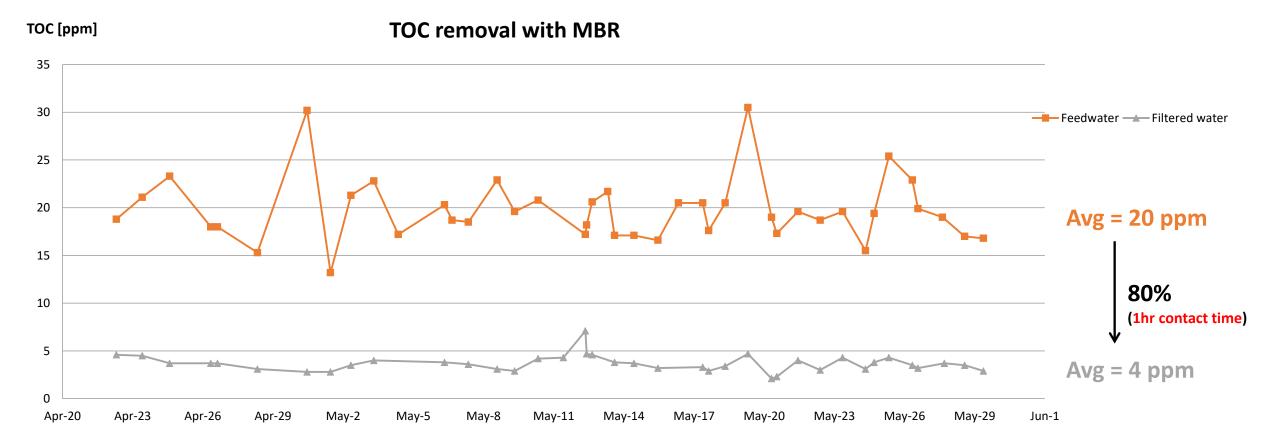
Cation/anion exchanger: SAC, WBA/SBA: removal of salinity and other; "pH bacteria barrier".

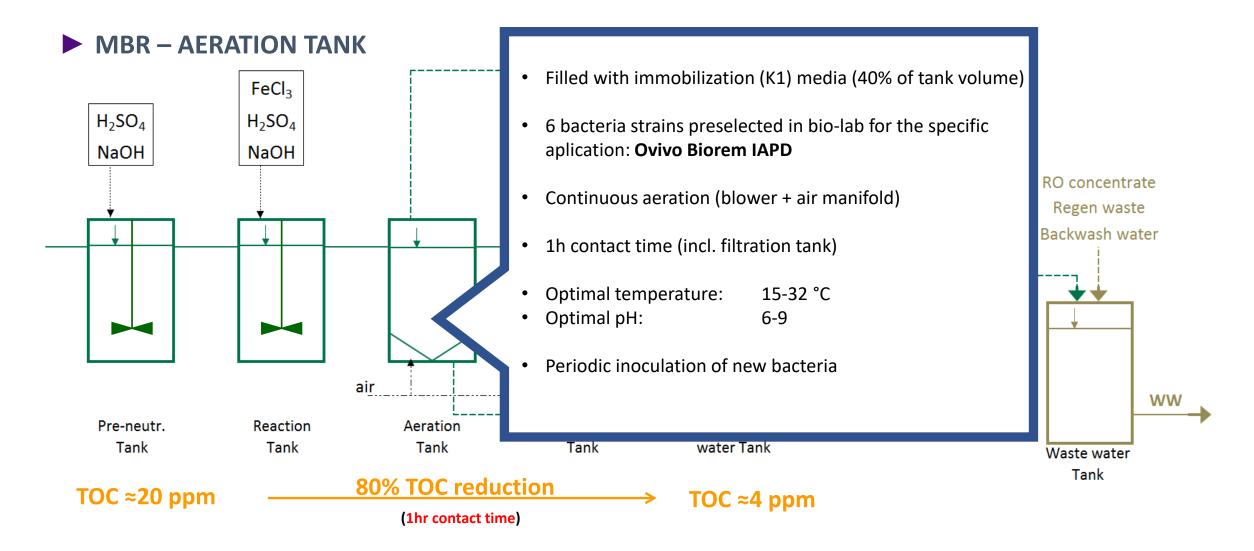
Reverse osmosis: Final reduction of TOC, salinity, other. Safety role in case of lower upstream steps performance.

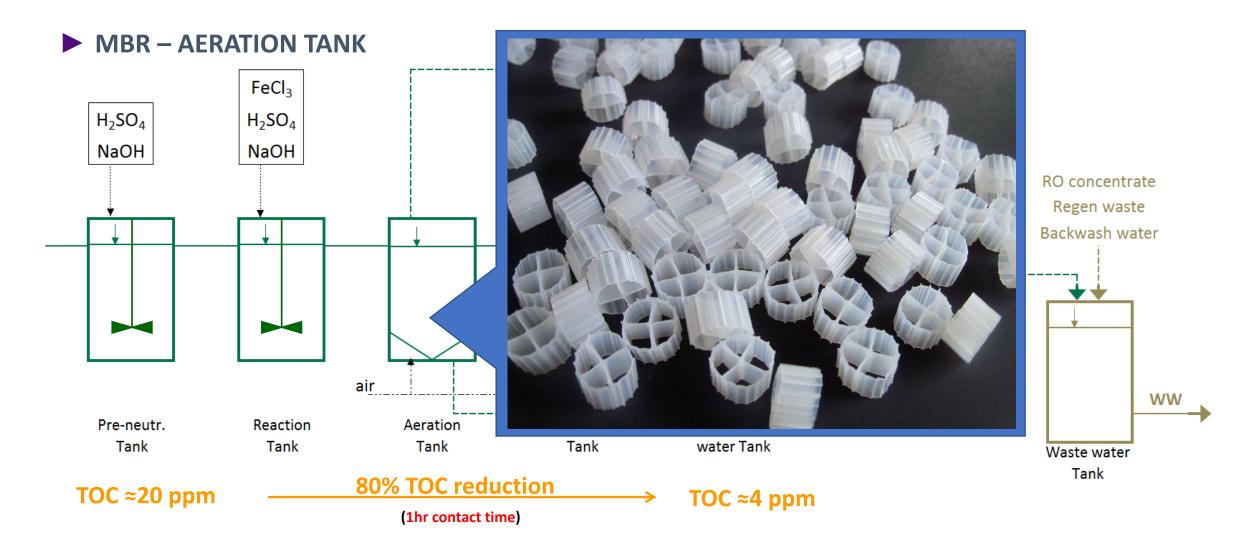

ACF BW waste, IX regen. waste, RO reject: discharged to city WW or recirculated

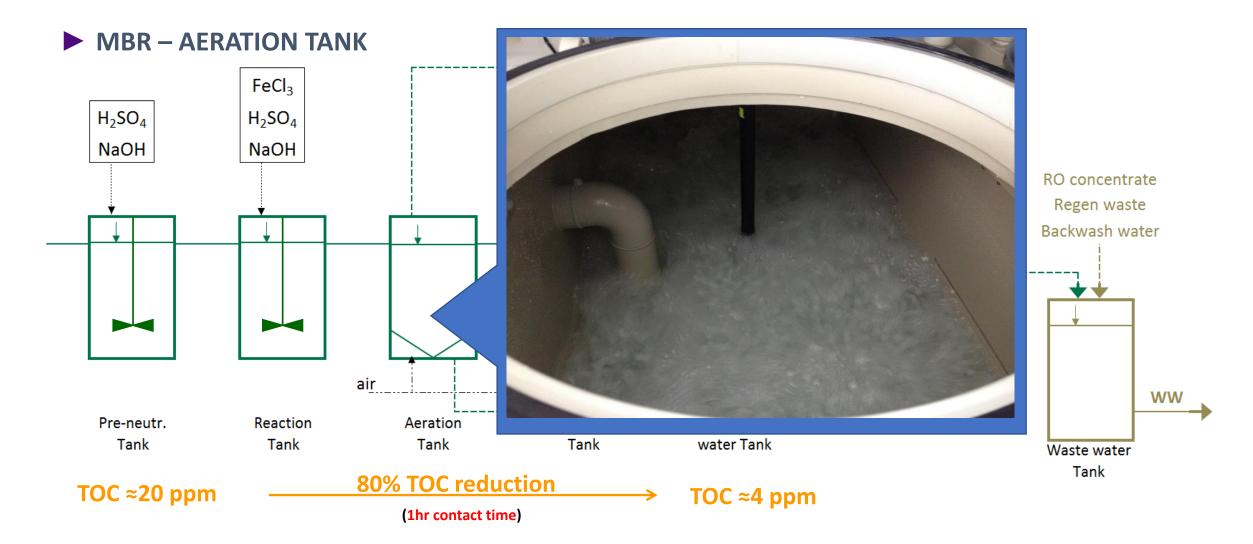
OVERALL WCF > 80%

RECLAIM SYSTEM PRODUCT (GUARANTEED VALUES)


	Conductivity	μS/cm	<10
	рН		≈7
	H_2O_2	ppm	< 1
	ТОС	ppm	<0.5
	IPA	ppm	<0.05
	Acetone	ppm	<0.05
	ТМАН	ppm	<0.1
	F	ppm	<0.1
	NH ₄ -N	ppm	<0.1
	W	ppm	< 0.05
	Dissolved Silica	ppm	< 0.5
	TSS	ppm	< 1
J	Turbidity	NFU	-



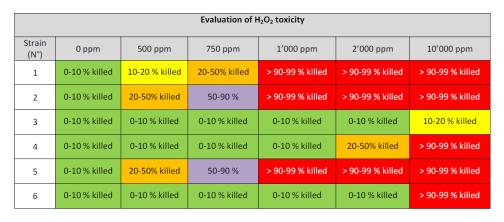

► PRE-TREATMENT



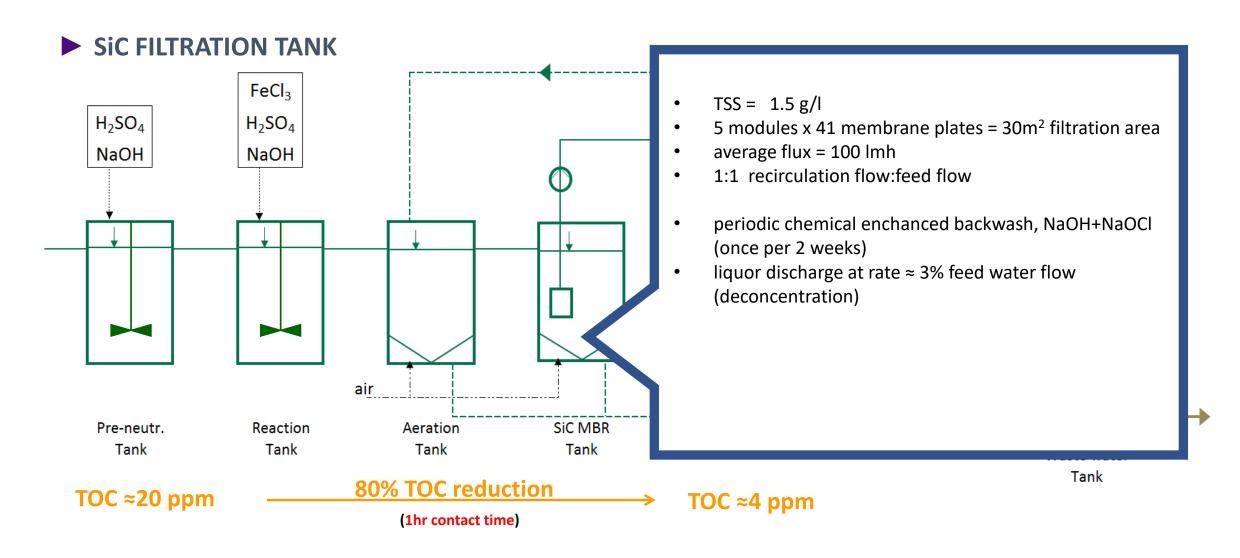
MBR – OVIVO BIOREM IAPD

- Specific mixture of six bacteria strains preselected in bio-lab in Switzerland
- The bacteria mixtured is tailored to the specific wastewater to:
 - maximize digestion of unwanted organics present in the wastewater
 - minimize digestion time (later corresponding to the contact time / MBR tanks sizes)
 - minimize bacteria mortality
- The bio-lab with a long time experience in bacteria selection has a library of bacteria strains with pretested performance
- The final choice of bacteria includes a test with sample of actual wastewater to be treated

ULTRAPURE **MICRO**2018

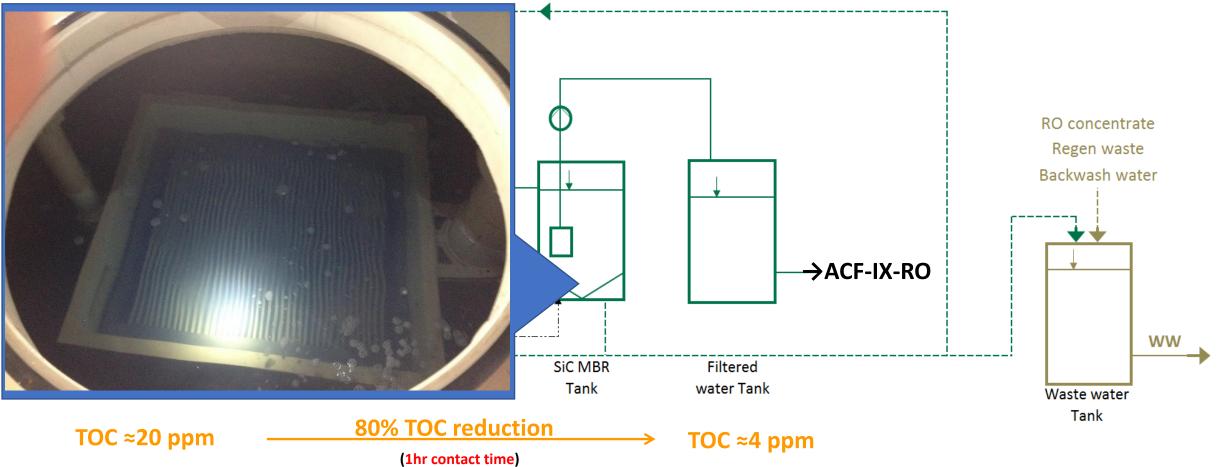

MBR – OVIVO BIOREM IAPD PERFORMACE: TOC SPECIATION BY LC-OCD

		DOC -					NO	м								_	SOM	_								
		boc	нос*	cboc -														1					DN	CDON	NO3-	NH₄⁺
			lioc	CDOC	<mark>в</mark> ю			♦ Building	+	LMW	↓ Urea	¥ 1	* *2	* ¥3	*	* X5	* X6	* ×7	* ¥8	* X9	* X10	* X11		CDON	NO3-	1114
					polymers	DON	* % Proteins	Blocks	Acids	Neutrals	orca	110 min	88.9 min	94 min	103.4 min				129 3 min		161,4 min					
		♥ Dissolved	♥ Hydrophob.	♥ Hydrophil.	polymera	(Norg)	in BlOpol.**	DIOCKS	Acido	Neduars			00,0 1111	34 1111	100,4 mm		111,5 1111	2 1,7 1111	120,0 1111	550 111	1 101,411111	100,0 1111				
Project:	ovivo 43		ppb-C	ppb-C	ppb-C	ppb-N	% BIOpol.	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-C	ppb-N	ppb-N	ppb-N	ppb-l
		% DOC	% DOC	% DOC	% DOC			% DOC	% DOC	% DOC	% DOC	% DOC	% DOC	% DOC			% DOC		% DOC			% DOC	-		-	
Feed water		25572	< 5	25572	11	< 5		246	353	1493	< 5	3314	10	< 5	3028	< 5	3858	< 5	< 5	481	12776		>> 58901	2437	692	>> 112
		100%		100,0%	0,0%		-	1,0%	1,4%	5,8%	-	13,0%	0,0%	-	11,8%		15,1%	_		1,9%	50,0%	_		2451		
MBR product		3662	<2	3662		< 2		317	301	474		4000	0,070	42				89				<2	>> 19763	407		>> 461
•		100%	~2	100,0%	197 5,4%	< 2		8,6%	8,2%	4/1	11	1896 51,8%	<2	13	< 2	< 2	< 2	2,4%	<2	351 9,6%	17 0,5%	<2	>> 19763	127	655	>> 461
Bio-ACF product								-			0,576	51,076	-	0,470					-			-				
· ·		418	<1	418	199	< 1		12	24	119	15	13	1	1	< 1	<1	<1	13	6	<1	<1	8	>> 7796	35	392	>> 162
		100%		100,0%	47,6%			2,8%	5,7%	20,3%	3,0%	3,2%	1,0%	U,4%				3,1%	1,4%			2,0%				
	Sample D	585	107	479	102	< 1		15	35	190	23	34	13	<1	31	7	<1	<1	14	<1	5	11	325	130	167	29
		100%	18,2%	81,8%	17,4%			2,6%	6,0%	32,4%	3,9%	5,8%	2,2%		5,3%	1,2%			2,3%		0,9%	1,9%				
	Sample E	203	55	149	4	< 1		<1	7	39	20	9	1	<1	38	4	<1	1	10	<1	7	8	55	42	< 1	13
		100%	27,0%	73,0%	2,0%				3,3%	19,2%	10,0%	4,3%	0,5%		18,9%	2,1%		0,6%	4,7%		3,3%	4,1%				
RO product		156	60	95	3	< 1		<1	10	30	16	10	2	< 1	<1	6	<1	4	1	<1	4	11	51	34	< 1	17
- 1		100%	38,7%	61,3%	1,8%				6,5%	19,6%	10,0%	6,2%	1,1%			3,5%		2,4%	0,9%		2,3%	7,1%				
-					··																			-		
TOC reducti	ion rat	tos						Libra	y mat	tches	:						IPA				ТМАН					


TOC reduction rates:

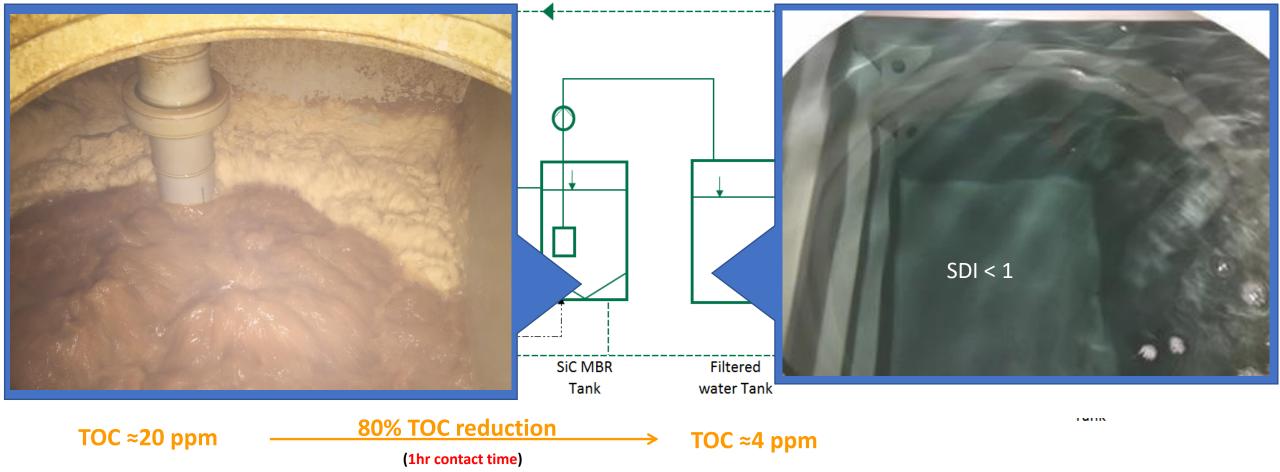
85% MBR: • 98.4% **Bio-ACF** • whole reclaim plant incl. RO 99.4%

- Library matches.
- X1: MeOH / Acetamide / EtOH
- X2: Glucose / Fructose
- Glycerine / DMSO X3:
- X4: 1,2 Propandiol / 1,3 Propandiol
- <u>X5:</u> Acetone
- X6: IPA
- X7: y-Butyrolactone / t-BuOH
- X8: MEK
- X9: Benzotriazole
- X10: TMA / TMAH
- X11: Pyridine

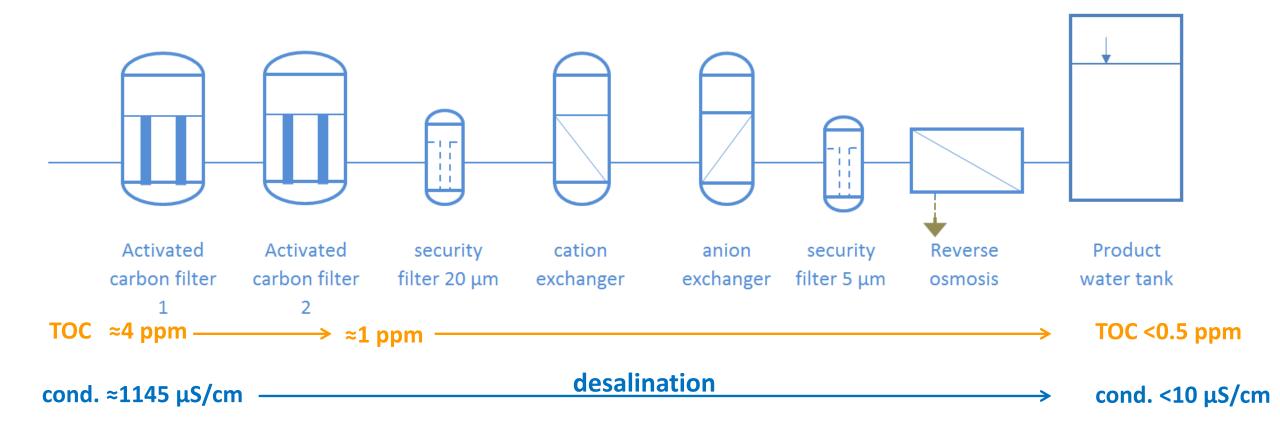


Sic FILTRATION TANK RO concentrate Regen waste Backwash water \rightarrow ACF-IX-RO WW SiC MBR Filtered Tank water Tank Waste water Tank 80% TOC reduction TOC ≈20 ppm TOC ≈4 ppm

(1hr contact time)

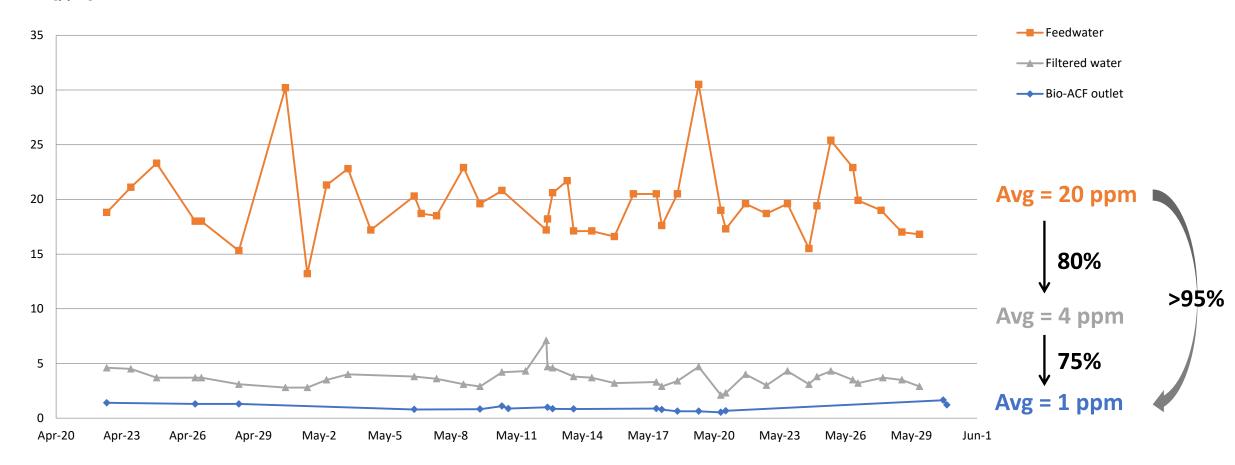


Sic FILTRATION TANK



SIC FILTRATION TANK AND FILTERED WATER TANK

POST-TREATMENT

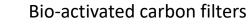


TOC [ppm]

POST-TREATMENT – BIO-ACF

TOC removal with MBR and bio-filter

ULTRAPURE MICRO 2018


POST-TREAT MENT

Activated

1

TOC ≈4 ppm

carbon filter

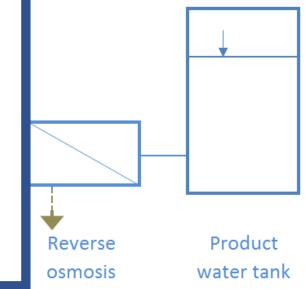
- Populated with the same bacteria strains as in the MBR
- 15 min contact time

٠

٠

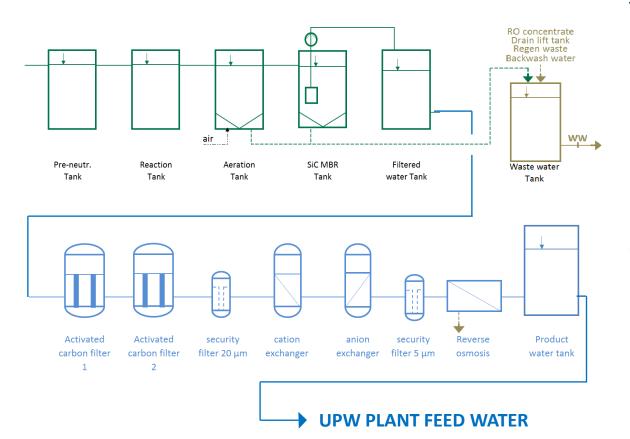
Activated

carbon filter


75%

TOC

reduction


→ ≈1 ppm

- Periodic backwash for solids removal and bed aeration (approx. once per week)
 - NaOCI dosing during backwash for bacteria growth control
 - Possible increase in WCF by backwash waste recirculation to neutralization tank

SUMMARY

MBR:

- Removal of critical organics (low molecular weight polar molecules, e.g. IPA, acetone) and TMAH
- TOC reduction at MBR > 80%
- Pre-treatment WCF > 97%
- Reduced footprint thanks to short contact times achieved and high SiC membranes flux (less membrane area required)

OVERALL PLANT:

- Fab waste treated to quality superior to city water
- Overall plant TOC reduction > 97%
- Overall plant WCF > 80%
- Cost effective and ecologically friendly solution

OPERATING COST

SD / volume pro	duct]	
		11.1 %
/ chemical dosing	g	
		24.9 %
		29.9 %
		8.0 %
VT + ACF)		0.1 %
		9.6 %
ne in years]		
[6]		3.9 %
[3]		2.4 %
nes [6]		8.3 %
[6]		1.7 %
		100 %
	VT + ACF) NT + ACF) [6] [3] [6] [3] [6] [6] [6] [6] [6] [6] [6] [6	ne in years] [6] [3] nes [6]

**The IWW Reuse system operating cost being based mostly on chemicals is much more variable in relation to fab loadings than city water cost is

DIW Plants

- Increased RO efficiency and membrane life
- Increased time between mixed bed regenerations and resin life
- Improved carbon life and potential to extend backwashes
- Improved delivered water quality and plant stability

Scrubbers

- Eliminates scale-forming potential
- Increased consumables life (packing and mist eliminators)

<u>Cooling Towers</u>

- Reduces scale forming potential and allows towers to run at higher cycles consuming less water
- Prolongs the life of cooling tower structure and fill

**The IWW Reuse System itself can also be optimized and lessons learned from future Pilots fed back to the final design and operation

Lessons Learned

- By having MBR & IEX before RO's, the RO's see no biofouling throughout full lifetime of operation
- Testing at sufficient equipment scale has direct application to predicting expected maintenance performance
- End of pilot stress testing can better define diversion criteria and quantify process sensitivity to interruption or change in wastewater quality
- Design pilot not to match exact the expectation of a full-scale solution, design for flexibility, potential, and testability (Double Pass RO that can also be operated as a Single Pass)

What is novel about this pilot program?

- Validated with real-time cost tracking that reclaimed water could be produced cheaper than city water (payback validation to aid in funding a long-term project)
- SiC UF & MBR for robust operation and sustained higher flux
- Test protocol and onsite lab (combo of online analyzer and manual samples)
- Specifically developed bio strains started 6 months before the pilot arrived (no pilot operational delay for bio strain development)
- System Engineering Approach (functional, tops-down requirements development)

Conclusions

- End-of-pipe reclaim is feasible and offers the greatest opportunity for water recovery
- Proved wastewater (as is) can be turned into city water or better with a water conversion efficiency between 70-85%
- Validated a robust measurement and diversion scheme and stress tested the system to ensure reliability and resilience
- Proved reuse water could be produced at 30-45% the cost of city water at today's rates

ovivowater.com

Copyright© 2015 Ovivo Inc. All rights reserved.

